Compact functors in categories of non-archimedean Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

Compact operators on Banach spaces

In this note I prove several things about compact linear operators from one Banach space to another, especially from a Banach space to itself. Some of these may things be simpler to prove for compact operators on a Hilbert space, but since often in analysis we deal with compact operators from one Banach space to another, such as from a Sobolev space to an L space, and since the proofs here are ...

متن کامل

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

متن کامل

On the Generalized Hyers–ulam Stability of Quartic Mappings in Non–archimedean Banach Spaces

Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability of the following quartic equation n ∑ k=2 ( k ∑ i1=2 k+1 ∑ i2=i1+1 . . . n ∑ in−k+1=in−k+1 ) f ( n ∑ i=1,i =i1,...,in−k+1 xi − n−k+1 ∑ r=1 xir )

متن کامل

Generalized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces

In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1971

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1971.39.821